Conditioned Media from Microvascular Endothelial Cells Cultured in Simulated Microgravity Inhibit Osteoblast Activity

نویسندگان

  • Alessandra Cazzaniga
  • Sara Castiglioni
  • Jeanette A. M. Maier
چکیده

BACKGROUND AND AIMS Gravity contributes to the maintenance of bone integrity. Accordingly, weightlessness conditions during space flight accelerate bone loss and experimental models in real and simulated microgravity show decreased osteoblastic and increased osteoclastic activities. It is well known that the endothelium and bone cells cross-talk and this intercellular communication is vital to regulate bone homeostasis. Because microgravity promotes microvascular endothelial dysfunction, we anticipated that the molecular cross-talk between endothelial cells exposed to simulated microgravity and osteoblasts might be altered. RESULTS We cultured human microvascular endothelial cells in simulated microgravity using the rotating wall vessel device developed by NASA. Endothelial cells in microgravity show growth inhibition and release higher amounts of matrix metalloproteases type 2 and interleukin-6 than controls. Conditioned media collected from microvascular endothelial cells in simulated microgravity were used to culture human osteoblasts and were shown to retard osteoblast proliferation and inhibit their activity. DISCUSSION Microvascular endothelial cells in microgravity are growth retarded and release high amounts of matrix metalloproteases type 2 and interleukin-6, which might play a role in retarding the growth of osteoblasts and impairing their osteogenic activity. CONCLUSIONS We demonstrate that since simulated microgravity modulates microvascular endothelial cell function, it indirectly impairs osteoblastic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk

Endothelial cells are spatially close to osteoblasts and regulate osteogenesis. Moreover, they are sensitive to mechanical stimuli, therefore we hypothesized that they are implicated in the regulation of bone metabolism during unloading. Conditioned media from endothelial cells (EC-CM) subjected to simulated microgravity (0.08g and 0.008g) increased osteoblast proliferation and decreased their ...

متن کامل

The Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells

Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...

متن کامل

Induction of Brain Microvascular Endothelial Cell Urokinase Expression by Cryptococcus neoformans Facilitates Blood-Brain Barrier Invasion

The invasive ability of the blood-borne fungal pathogen Cryptococcus neoformans can be enhanced through interactions with host plasma components, such as plasminogen. Previously we showed by in vitro studies that plasminogen coats the surface of C. neoformans and is converted to the active serine protease, plasmin, by host plasminogen activators. Viable, but not formaldehyde- or sodium azide-ki...

متن کامل

miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity

Recent studies have demonstrated that miRNAs can play important roles in osteoblast differentiation and bone formation. However, the function of miRNAs in bone loss induced by microgravity remains unclear. In this study, we investigated the differentially expressed miRNAs in both the femur tissues of hindlimb unloading rats and primary rat osteoblasts (prOB) exposed to simulated microgravity. S...

متن کامل

Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues

BACKGROUND Systemic sclerosis (SSc) is a chronic inflammatory autoimmune disease characterised by vascular dysfunction and damage, excess collagen deposition and subsequent organ manifestations. Vasculopathy is an early feature of the disease which leads to a chronic hypoxic environment in the tissues. Paradoxically, there is a lack of angiogenesis. We hypothesised that this may in part be due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014